高级检索

矿山遗存地下空间利用现状与结构充填技术应用前景

Utilization status of underground space of mine remains and application prospect of structural filling technology

  • 摘要: 我国煤炭高强度开采后形成巨量地下遗存空间,其资源化利用对缓解土地压力、防控次生灾害及实现“双碳”目标具有重要意义。系统梳理了煤炭地下空间现有综合利用技术,探讨了CO2地下封存技术与地下水库技术等研究进展,结合团队提出的结构充填技术理论,分析了该技术亟待解决的关键问题、应用瓶颈与发展前景。已有文献表明:CO2地下封存技术依托工业固废矿化反应实现CO2封存,但固碳材料渗透性与长期稳定性等物理性能仍有待提升,储碳空间围岩在多场耦合作用下的损伤机制尚未明晰;地下水库技术通过改造采空区构建储水系统,但周期性水压波动诱发坝体结构干湿循环疲劳问题亟待解决;结构充填技术以低充填率、高稳定性设计构建稳定地下空间结构,为空间功能化提供力学保障,但仍面临关键充填位置不明确、材料性能与功能需求矛盾、多场耦合损伤机理不清及智能化工艺不足等瓶颈;未来需聚焦功能化充填材料开发、跨尺度THMC多场耦合建模、智能感知与数字孪生技术应用,构建“地质精准探测–功能定向设计–动态优化调控”技术体系。通过跨学科协同创新、政策机制支持及标准化建设,推动地下空间从环境负担向战略资源转化,为矿区绿色转型与“双碳”目标实现提供理论和技术支撑。

     

    Abstract: Intensive coal mining in China has generated vast underground voids, whose resource utilization holds significant implications for alleviating land pressure, preventing secondary disasters, and achieving carbon neutrality goals. This paper systematically reviews current comprehensive utilization technologies for coal underground spaces, examines research progress in CO2 geological sequestration and underground reservoir technologies, and analyzes critical challenges and development prospects through the lens of structural backfill technology proposed by our research team. Existing studies reveal that while CO2 sequestration via industrial solid waste mineralization shows promise, critical issues persist regarding the permeability and long-term stability of carbon fixation materials, along with unclear damage mechanisms of reservoir surrounding rocks under multi-field coupling effects. Underground reservoir technology constructs water storage systems through goaf modification, yet faces critical challenges of cyclic hydraulic pressure-induced wet-dry fatigue in dam structures. Structural backfill technology establishes stable underground structures through low backfill ratio and high-stability designs, providing mechanical guarantees for functional space utilization, but confronts bottlenecks including undefined critical backfill positions, material performance-function mismatches, unclear multi-field coupling mechanisms, and insufficient intelligent processes. Future research should prioritize functional backfill material development, cross-scale THMC multi-field coupling modeling, and intelligent perception-digital twin integration to establish a technical system encompassing “geological precision detection-functional orientation design-dynamic optimization control”. Through interdisciplinary collaboration, policy support, and standardization efforts, this study aims to transform underground voids from environmental burdens into strategic resources, providing theoretical and technical foundations for green mining transition and carbon neutrality achievement.

     

/

返回文章
返回